
MATLAB and the MTEX Toolbox

for Texture Analysis
Nuclear Materials Research Group

Travis Skippon and Chris Cochrane

Department of Mechanical and Materials Engineering
Queen’s University

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Background

MATLAB is a numerical computing environment and
programming language, by MathWorks It is designed to rapidly
perform vector analysis and matrix algebra. Due to some
specific design choices, it is a relatively straightforward
platform for performing numerical calculations on large
datasets.
MTEX is a free MATLAB toolbox for the analysis of
crystallographic texture. It is primarily designed for analysis of
EBSD data. The project is maintained by Dr. Ralf Hielscher,
of the Technische Universitat Chemnitz. The documentation is
quite extensive: https://mtex-toolbox.github.io/

Travis Skippon and Chris Cochrane Texture and MATLAB 2 / 78

https://mtex-toolbox.github.io/

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Why do you care?

Many problems related to crystallographic texture, such as
orientation analysis and grain statistics, are massively
simplified by using the appropriate tool.
Very large datasets or transitions between reference frame or
crystal structure can be handled by MATLAB and MTEX,
allowing you to focus on the science instead of the calculation.
This presentation is meant to provide some background to
help you get started, and give you an idea of what kinds of
problems MTEX can help you solve.

Travis Skippon and Chris Cochrane Texture and MATLAB 3 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

1 MATLab Basics
Basics
Conditional Indexing
Structures and Properties

2 Working with EBSD Data
Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Orientation Relationships
Twin Identification

3 Working with Pole Figures
Pole Figures
Orientation Distribution Functions

4 Schmidt Factor Analysis

Travis Skippon and Chris Cochrane Texture and MATLAB 4 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics
Conditional Indexing
Structures and Properties

Basic Datatypes in MATLAB

%% Sc a l a r s :
x=2
x*3

%% Vecto r s / ma t r i c e s :
x =[1 2 3 ; 4 5 6 ; 7 8 9]
x (1 , 1) %r e t u r n s 1 s t row , 1 s t column
x (1 , 1 : 3) %r e t u r n s 1 s t row , columns 1 through 3
x (1 , :) %r e t u r n s the e n t i r e f i r s t row
x (1 ,3)= x (2 , end) %a s s i g n s a v a l u e to p o s i t i o n (1 , 3)

Travis Skippon and Chris Cochrane Texture and MATLAB 5 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics
Conditional Indexing
Structures and Properties

Conditional Indexing: Your New Best Friend

t ime = [1 : 1 0 0 0 0] ;
sample1=abs (100* cos (t ime / 4 0 0)) ;
sample2 =100* s i n (t ime / 1 0 0 0 0) ;

f i gu r e (1)
p lot (t ime , sample1 , ’ . ’ , t ime , sample2 , ’ . ’)
legend ({ ’ sample 1 ’ ’ sample 2 ’ })

Travis Skippon and Chris Cochrane Texture and MATLAB 6 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics
Conditional Indexing
Structures and Properties

Conditional Indexing

Travis Skippon and Chris Cochrane Texture and MATLAB 7 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics
Conditional Indexing
Structures and Properties

Conditional Indexing

What if we are only interested in the data where Sample 1 is
greater than Sample 2?

With Conditional Indexing

x=t ime (sample1>sample2) ;
y=sample1 (sample1>sample2) ;
y2=sample2 (sample1>sample2) ;

Without Cond. Ind.

j =1;
f o r i =1:10000

i f sample1 (i)>sample2 (i)
x i f (j)= t ime (i) ;
y i f (j)=sample1 (i) ;
y i f 2 (j)=sample2 (i) ;
j=j +1;

end
end

Run time: 0.00075 seconds Run time: 0.03 seconds
Travis Skippon and Chris Cochrane Texture and MATLAB 8 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics
Conditional Indexing
Structures and Properties

Travis Skippon and Chris Cochrane Texture and MATLAB 9 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics
Conditional Indexing
Structures and Properties

Structures and Properties

You can also create structures that contain many different
types of data. This is useful in some situations and is used
extensively by MTEX.
Here we set up a structure called Sample. Each sample has 4
properties: material, type, data, and rate.

sample . m a t e r i a l= ’ Z i r c a l o y −2 ’ ;
sample . type= ’ t e n s i l e ’ ;
sample . data = 0 : 0 . 2 : 5 ;
sample . r a t e =1e−4;

Travis Skippon and Chris Cochrane Texture and MATLAB 10 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics
Conditional Indexing
Structures and Properties

Structures and Properties

Like regular variables, structures can be made into arrays.
Let’s add a second entry to sample:

sample (2) . m a t e r i a l= ’ E x c e l ’ ;
sample (2) . type= ’ c o m p r e s s i o n ’ ;
sample (2) . data =0:−0.2:−5;
sample (2) . r a t e =1e−5;

Travis Skippon and Chris Cochrane Texture and MATLAB 11 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics
Conditional Indexing
Structures and Properties

Structures and Properties - Indexing

We can use conditional indexing on structures, too!
Let’s say we wanted to find samples that had a rate of 1e-5

x=sample ([sample . r a t e]==1e−5);

Note that we need to use square brackets to turn our structure
output into something that can be directly compared to a
value. This is just an odd Matlab quirk.

Travis Skippon and Chris Cochrane Texture and MATLAB 12 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Working with EBSD Data

One of the most most frequent applications of MTEX is
analysis of EBSD data.

> i m p o r t w i z a r d (’EBSD ’)

> ebsd = loadEBSD (fname , CS , ’ i n t e r f a c e ’ , ’ c t f ’ , . . .
’ c o n v e r t E u l e r 2 S p a t i a l R e f e r e n c e F r a m e ’) ;

Travis Skippon and Chris Cochrane Texture and MATLAB 13 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

EBSD - Import Wizard

Travis Skippon and Chris Cochrane Texture and MATLAB 14 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Ebsd Data is stored in a structure that has many properties.
If you type the name of your ebsd structure, MATLAB will
output a summary.

> ebsd
ebsd = EBSD (show methods , p l o t)

Phase O r i e n t a t i o n s M ine r a l Co lo r Symmetry C r y s t a l r e f e r e n c e frame
0 24905 (8%) not Indexed
1 213854 (69%) Zi rcon ium l i g h t b l u e 6/mmm X | | a* , Y | | b , Z | | c
2 71441 (23%) Zi rcon iumBeta l i g h t g reen m−3m

P r o p e r t i e s : bands , bc , bs , e r r o r , mad , x , y
Scan u n i t : um

Only some of the properties are listed. To see a list of all of
them, type in ”ebsd.” (without quotes) to the command line
and press the tab key. MATLAB will open a list of properties
available. This works for most structure types in MATLAB.

Travis Skippon and Chris Cochrane Texture and MATLAB 15 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

EBSD Data - Indexing

> ebsd (’ Z i r con ium ’)

ans = EBSD (show methods , p l o t)

Phase O r i e n t a t i o n s M ine r a l Co lo r Symmetry C r y s t a l r e f e r e n c e frame
1 213854 (100%) Zi rcon ium l i g h t b l u e 6/mmm X | | a* , Y | | b , Z | | c

P r o p e r t i e s : bands , bc , bs , e r r o r , mad , x , y
Scan u n i t : um

> ebsd (ebsd . phase==1)

ans = EBSD (show methods , p l o t)

Phase O r i e n t a t i o n s M ine r a l Co lo r Symmetry C r y s t a l r e f e r e n c e frame
1 213854 (100%) Zi rcon ium l i g h t b l u e 6/mmm X | | a* , Y | | b , Z | | c

P r o p e r t i e s : bands , bc , bs , e r r o r , mad , x , y
Scan u n i t : um

Travis Skippon and Chris Cochrane Texture and MATLAB 16 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Plotting EBSD Data

By default, MATLAB plots EBSD data by phase. If you have a
single phase material, this means you won’t see much.

> p lot (ebsd)

Travis Skippon and Chris Cochrane Texture and MATLAB 17 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

There are many other things we might be interested in
plotting from EBSD data.
Here is how to plot Band Contrast.

f i gu r e (1)
p lot (ebsd , ebsd . bc)
colormap (’ g r a y ’) ;

Travis Skippon and Chris Cochrane Texture and MATLAB 18 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

We can plot orientations, but only for one phase at a time:
Remember, you can specify a phase within brackets when
calling the ebsd structure. Here is some code that will plot an
inverse pole figure showing how the colors relate to orientation
f i g u r e (2)
p l o t (ebsd (’ Z i r con ium ’) , ebsd (’ Z i r con ium ’) . o r i e n t a t i o n s)
f i g u r e (3)
oM=ipdfHSVOr ientat ionMapp ing (ebsd (’ Z i r con ium ’) . o r i e n t a t i o n s) ;
p l o t (oM)

Travis Skippon and Chris Cochrane Texture and MATLAB 19 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Grain Reconstruction

MTEX can ”reconstruct” grains from ebsd data.
calcGrains takes in ebsd and will define a grain boundary as
any point where there is a change in orientation of 5 degrees
or more. It outputs a list of grains, and gives the ebsd
structure new properties called grainId, and mis2mean.
GrainId tells which grain each pixel in the map belongs to, and
mis2mean is the misorientation of each pixel to the mean
orientation of its grain.

[g r a i n s , ebsd . g r a i n I d , ebsd . mis2mean] = . . .
c a l c G r a i n s (ebsd , ’ a n g l e ’ , 5* d e g r e e) ;

p lot (g r a i n s)

Travis Skippon and Chris Cochrane Texture and MATLAB 20 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Travis Skippon and Chris Cochrane Texture and MATLAB 21 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

MTEX has treated non-indexed areas as their own grains. If
you’d instead like MTEX to simply absorb non-indexed points
into grains formed by indexed points, you can issue this
command instead:

[g r a i n s , ebsd . g r a i n I d , ebsd . mis2mean] = . . .
c a l c G r a i n s (ebsd (’ i n d e x e d ’) , ’ a n g l e ’ , 5* d e g r e e) ;

Instead of sending all of ebsd as an argument to calcGrains,
we send only the indexed parts.

Travis Skippon and Chris Cochrane Texture and MATLAB 22 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Travis Skippon and Chris Cochrane Texture and MATLAB 23 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Often you will see that there are a lot of reconstructed grains
that are very tiny, perhaps even a single pixel. These are
usually mis-indexed points
You can get rid of them and clean up your map a little by first
running grain reconstruction, then executing the following
command to remove any points that are in grains less than 3
pixels large:

[g r a i n s , ebsd . g r a i n I d , ebsd . mis2mean] = . . .
c a l c G r a i n s (ebsd , ’ a n g l e ’ ,5* d e g r e e) ;

ebsd (g r a i n s (g r a i n s . g r a i n S i z e <3)) = [] ;

[g r a i n s , ebsd . g r a i n I d , ebsd . mis2mean] = . . .
c a l c G r a i n s (ebsd (’ i n d e x e d ’) , ’ a n g l e ’ ,5* d e g r e e) ;

Travis Skippon and Chris Cochrane Texture and MATLAB 24 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Travis Skippon and Chris Cochrane Texture and MATLAB 25 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

It’s often useful to combine the raw ebsd data with the
reconstructed grain boundary data. Here we plot the
orientation data and use MATLAB’s hold feature to add grain
boundaries to the figure:
Using the hold command, we plot a property of grains called
boundary. This will outline the grain boundaries in black.
We’ll also set the linewidth to 1.5 since the default lines are a
bit too thin

f i gu r e (1)
p lot (ebsd (’ Z i r co n i um ’) , . . .

ebsd (’ Z i rc o n iu m ’) . o r i e n t a t i o n s) ;

hold on
p lot (g r a i n s . boundary , ’ l i n e w i d t h ’ , 1 . 5) ;
hold o f f

Travis Skippon and Chris Cochrane Texture and MATLAB 26 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Travis Skippon and Chris Cochrane Texture and MATLAB 27 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Grain Statistics

In MTEX, you can get a histogram of grain sizes by sending
your grains object to the function hist(). The number of bins
can also be specified (default is 15).

h i s t (g r a i n s , 2 0)

Travis Skippon and Chris Cochrane Texture and MATLAB 28 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Travis Skippon and Chris Cochrane Texture and MATLAB 29 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

You can also use standard MATLAB functions to get useful
information about your grains Here we calculate the median
grain size, as well as for each phase individually. (Note:
grains.area returns the area in µm2, and grains.grainSize
returns the area in number of pixels.)

> median (g r a i n s . a r e a)
ans =

1.7709

> median (g r a i n s (g r a i n s . phase ==1). a r e a)
ans =

2.5642

> median (g r a i n s (g r a i n s . phase ==2). a r e a)
ans =

1.2681

Travis Skippon and Chris Cochrane Texture and MATLAB 30 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Properties List Reminder

The grains object has many useful properties! Remember, you
can see a list of the properties in grains by typing ”grains.”
(without quotes) into the Matlab command line and pressing
the tab key.

Travis Skippon and Chris Cochrane Texture and MATLAB 31 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Plotting Grain Boundaries

Often the character of grain boundaries can tell us about how
a material’s grain structure formed. Let’s say we want to plot
grain boundaries with a certain angle, to compare high angle
and low angle boundaries.
This gets a little tricky because it takes advantage of the fact
that you can have multiple ”layers” of properties in a single
structure

Travis Skippon and Chris Cochrane Texture and MATLAB 32 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

First we’ll define gB as the grain boundary information from
grains

gB=g r a i n s . boundary ;

Next we define gBAA as the alpha/alpha grain boundaries.
gBBB will be the beta/beta grain boundaries.

gBAA=gB(’ Z i r co n i um ’ , ’ Z i r co n iu m ’) ;
gBBB=gB(’ Z i rcon iumBeta ’ , ’ Z i rcon iumBeta ’) ;
p lot (g r a i n s)

Travis Skippon and Chris Cochrane Texture and MATLAB 33 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Using the hold command we plot GBAA and GBBB and color
them by their misorientation angle. This will let us show which
grain boundaries are high and which are low. We needed to do
this for just the alpha/alpha and beta/beta boundaries
because MTEX doesn’t know how to meaningfully find
misorientations between diffferent crystal structures

hold on
p lot (gBAA , gBAA . m i s o r i e n t a t i o n . angle/ degree , . . .

’ l i n e w i d t h ’ , 1 . 5)
p lot (gBBB , gBBB . m i s o r i e n t a t i o n . angle/ degree , . . .

’ l i n e w i d t h ’ , 1 . 5)
hold o f f
colormap (’ j e t ’)

Travis Skippon and Chris Cochrane Texture and MATLAB 34 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Travis Skippon and Chris Cochrane Texture and MATLAB 35 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Plotting by Misorientation Axis

In addition to the misorientation angle of grain boundaries, it
is often useful to know which crystallographic direction the
misorientation occurs about.
We will define the grain boundaries as in the previous section.
Now we define an axis that we are interested in. We define
axisA as the {101̄0} plane normal. The last argument is the
crystal symmetry for the phase in question, which must be
provided so MTEX knows what kind of structure your Miller
variable goes with.

gB=g r a i n s . boundary ;
gBAA=gB(’ Z i r co n i um ’ , ’ Z i r co n iu m ’) ;
a x i s A=M i l l e r (1 ,0 ,−1 ,0 , ebsd (’ Z i r c on i u m ’) . CS) ;

Travis Skippon and Chris Cochrane Texture and MATLAB 36 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Now, we find which boundaries have a misorientation axis
close to the ones we’ve defined. We define axisGBA as a
conditional statement, so we can use it for conditional
indexing. This will find all grain boundaries that have a
misorientation axis within 5 degrees of the one we defined.
Here we plot the grains, then use the hold command to add
the special grain boundaries we’re interested in. The
alpha/alpha grains with their 10-10 misorientation axis

axisGBA = . . .
angle (gBAA . m i s o r i e n t a t i o n . ax is , a x i s A)<5* d e g r e e ;

p lot (g r a i n s) , hold on
p lot (gBAA(axisGBA) , ’ l i n e c o l o r ’ , ’ r e d ’ , . . .

’ l i n e w i d t h ’ , 1 . 5) ;
hold o f f

Travis Skippon and Chris Cochrane Texture and MATLAB 37 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Travis Skippon and Chris Cochrane Texture and MATLAB 38 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Intermission?

Travis Skippon and Chris Cochrane Texture and MATLAB 39 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Orientation Relationships

This section will demonstrate how to pick out very specific
grain boundaries where both the misorientation axis and angle
are defined. This will be used to look at the Burgers
relationship between the alpha and beta phase, and to identify
twin/parent combinations.

Travis Skippon and Chris Cochrane Texture and MATLAB 40 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

We start by defining 4 Miller directions, such that a1‖b1 and
a2‖b2. This will let us define the orientation relationship
between alpha and beta phases

a1=M i l l e r (0 , 0 , 0 , 2 , ebsd (’ Z i r c on i um ’) . CS) ;
b1=M i l l e r (1 , 1 , 0 , ebsd (’ Z i rcon iumBeta ’) . CS) ;
a2=M i l l e r (1 ,1 ,−2 ,0 , ebsd (’ Z i r c on i u m ’) . CS) ;
b2=M i l l e r (1 , 1 , 1 , ebsd (’ Z i rcon iumBeta ’) . CS) ;

Next, we create an orientation map from alpha to beta
based on the sets of parallel directions we just defined.

ab=o r i e n t a t i o n (’map ’ , a1 , b1 , a2 , b2 , . . .
ebsd (’ Z i rc o n iu m ’) . CS , ebsd (’ Z i rcon iumBeta ’) . CS) ;

Travis Skippon and Chris Cochrane Texture and MATLAB 41 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

We we now want to get just the grain boundaries that are
alpha/beta boundaries.

gBAB=g r a i n s . boundary (’ Z i rc o n i u m ’ , ’ Z i rcon iumBeta ’) ;

Now we will take all alpha/beta boundaries that have a
misorientation within 5 degrees of the relationship we defined.

i s B u r g e r s=angle (gBAB . m i s o r i e n t a t i o n , ab)<5* d e g r e e ;

Finally, we plot the results using conditional indexing:

p lot (g r a i n s) , hold on
p lot (gBAB(i s B u r g e r s) , ’ l i n e c o l o r ’ , ’ r e d ’ , . . .

’ l i n e w i d t h ’ , 1 . 5) ;
hold o f f

Travis Skippon and Chris Cochrane Texture and MATLAB 42 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Travis Skippon and Chris Cochrane Texture and MATLAB 43 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Twin Identification

In Zr and other materials, we sometimes see a lot of twins
formed during deformation. It’s really easy to pick out twins
from EBSD data with MTEX. The MTEX help page on this is
actually pretty good: http://mtex-
toolbox.github.io/files/doc/TwinningAnalysis.html
First we’ll import a dataset from a tensile sample that has
been heavily deformed

i m p o r t i n c r e m e n t 3 ;
f i gu r e (1)
p lot (ebsd (’ Z i r co n i um ’) , ebsd (’ Z i r co n i um ’) . o r i e n t a t i o n s) ;

Travis Skippon and Chris Cochrane Texture and MATLAB 44 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Travis Skippon and Chris Cochrane Texture and MATLAB 45 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Now, run grain reconstruction. This map has some poorly
indexed points, so we’ll get rid of any grains smaller than 3
pixels. We are interested in Zr/Zr grain boundaries only.

[g r a i n s , ebsd . g r a i n I d , ebsd . mis2mean] = . . .
c a l c G r a i n s (ebsd (’ i n d e x e d ’) , ’ a n g l e ’ ,5* d e g r e e) ;

ebsd (g r a i n s (g r a i n s . g r a i n S i z e <3)) = [] ;
[g r a i n s , ebsd . g r a i n I d , ebsd . mis2mean] = . . .

c a l c G r a i n s (ebsd (’ i n d e x e d ’) , ’ a n g l e ’ ,5* d e g r e e) ;

bounds=g r a i n s . boundary ;
boundsZr=bounds (’ Z i r c on i um ’ , ’ Z i r co n i um ’) ;

Travis Skippon and Chris Cochrane Texture and MATLAB 46 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Now we define the twinning orientation relationship. In Zr the
relationship is as defined below, where t1‖t2 and t3‖t4.

t1=M i l l e r (1 ,1 ,−2 ,0 , ebsd (’ Z i r c on i u m ’) . CS) ;
t2=M i l l e r (2 ,−1 ,−1 ,0 , ebsd (’ Z i r c on i u m ’) . CS) ;
t3=M i l l e r (−1 ,0 ,1 ,1 , ebsd (’ Z i r c on i um ’) . CS) ;
t4=M i l l e r (1 ,0 ,−1 ,1 , ebsd (’ Z i r c on i u m ’) . CS) ;

t w i n n i n g = o r i e n t a t i o n (’map ’ , t1 , t2 , t3 , t4)

This orientation relationship defines the {101̄2}〈1̄011〉 tensile
twinning mode.

Travis Skippon and Chris Cochrane Texture and MATLAB 47 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Now we check which grain boundaries are twins by setting a
condition to check if the boundary’s mistorientation is within 5
degrees of the orientation relationship, then use conditional
indexing.

i s t w i n n i n g = . . .
angle (t w i n n i n g , boundsZr . m i s o r i e n t a t i o n)<5* d e g r e e ;

t w i n b o u n d a r i e s=boundsZr (i s t w i n n i n g) ;
f i gu r e (2)
p lot (ebsd (’ Z i r co n i um ’) , . . .

ebsd (’ Z i rc o n iu m ’) . o r i e n t a t i o n s)
hold on
p lot (g r a i n s . boundary , ’ l i n e w i d t h ’ , 1 . 5) ;
p lot (t w i n b o u n d a r i e s , ’ l i n e w i d t h ’ , 1 . 5 , . . .

’ l i n e c o l o r ’ , ’ r e d ’) ;
hold o f f

Travis Skippon and Chris Cochrane Texture and MATLAB 48 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Travis Skippon and Chris Cochrane Texture and MATLAB 49 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

There’s a command to merge twins with their parents, so that
they will be considered a single grain.

[mergedGra ins , p a r e n t I d] = . . .
merge (g r a i n s , t w i n b o u n d a r i e s) ;

This also lets you see what your untwinned grain size looks
like:

> median (g r a i n s . a r e a)
ans =

2.3553

> median (mergedGra ins . a r e a)
ans =

2.5126

Travis Skippon and Chris Cochrane Texture and MATLAB 50 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Travis Skippon and Chris Cochrane Texture and MATLAB 51 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Basics of EBSD Data
Grain Statistics
Grain Boundaries
Advanced Boundary Analysis

Finally, you can get the twin area fraction like this. First we
get the grain id numbers of all the twins. The unique()
function makes sure there’s no duplicates.

t w i n I d = u n i q u e (boundsZr (i s t w i n n i n g) . g r a i n I d) ;

Next we get the sum of the areas all the twins, and divide
them from the sum of the areas of the entire set of grains

> t w i n F r a c t i o n = sum(a r e a (g r a i n s (t w i n I d))) / . . .
sum(a r e a (g r a i n s)) * 100

t w i n F r a c t i o n =
14.7671

Travis Skippon and Chris Cochrane Texture and MATLAB 52 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

Pole Figures

We can take the orientation data from an EBSD structure and
use it to generate pole figures.
First, define the crystallographic directions you’d like to create
pole figures for, then use the plotPDF command:

p1=M i l l e r (0 , 0 , 0 , 2 , ebsd (’ Z i r c on i um ’) . CS) ;
p2=M i l l e r (1 ,0 ,−1 ,0 , ebsd (’ Z i r c on i u m ’) . CS) ;
plotPDF (ebsd (’ Z i r co n iu m ’) . o r i e n t a t i o n s , [p1 p2])

Travis Skippon and Chris Cochrane Texture and MATLAB 53 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

Travis Skippon and Chris Cochrane Texture and MATLAB 54 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

The plot we just made will randomly plot a certain number of
points from the ebsd map onto the pole figure. If you want to
plot all of the points, you can do so by setting the ’points’
option to ’all’. It’s also useful to change the marker size.

plotPDF (ebsd (’ Z i r co n iu m ’) . o r i e n t a t i o n s , [p1 p2] , . . .
’ p o i n t s ’ , ’ a l l ’ , ’ m a r k e r S i z e ’ , 3)

Travis Skippon and Chris Cochrane Texture and MATLAB 55 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

Travis Skippon and Chris Cochrane Texture and MATLAB 56 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

All these points makes it difficult to see what’s going on, and
it’s often more useful to display PF’s as contour plots. The
contourf option will plot the PF as a filled contour plot, and
the option after it sets the scale of the contours, in this case
from 0 to 6 mrd in steps of 1. If you prefer unfilled plots you
can use contour instead of contourf.

plotPDF (ebsd (’ Z i r co n iu m ’) . o r i e n t a t i o n s , [p1 p2] , . . .
’ c o n t o u r f ’ , 0 : 1 : 6)

co lorbar ;

Travis Skippon and Chris Cochrane Texture and MATLAB 57 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

Travis Skippon and Chris Cochrane Texture and MATLAB 58 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

Inverse Pole Figures

If you want to plot an inverse pole figure to see which crystal
orientations are aligned along a given sample direction, MTEX
can do it quite easily. The following code will plot inverse pole
figures for the x,y, and z directions of the ebsd map. Here we
also show that you can use mean orientation data from grains
instead of considering each individual pixel.

Travis Skippon and Chris Cochrane Texture and MATLAB 59 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

[g r a i n s , ebsd . g r a i n I d , ebsd . mis2mean] = . . .
c a l c G r a i n s (ebsd (’ i n d e x e d ’) , ’ a n g l e ’ ,5* d e g r e e) ;

f i gu r e (1)
p lot IPDF (g r a i n s (g r a i n s . phase ==1). m eanO r ie ntat ion , . . .

x v e c t o r , ’ c o n t o u r f ’) , co lorbar ;
f i gu r e (2)
p lot IPDF (g r a i n s (g r a i n s . phase ==1). m eanO r ie ntat ion , . . .

y v e c t o r , ’ c o n t o u r f ’) , co lorbar ;
f i gu r e (3)
p lot IPDF (g r a i n s (g r a i n s . phase ==1). m eanO r ie ntat ion , . . .

z v e c t o r , ’ c o n t o u r f ’) , co lorbar ;

Travis Skippon and Chris Cochrane Texture and MATLAB 60 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

Travis Skippon and Chris Cochrane Texture and MATLAB 61 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

If you want to plot an IPF for an arbitrary direction you can do
that as well. The following code will create an IPF for a
direction halfway between the x and y directions (i.e. going
diagonally across the map).

d i r=v e c t o r 3 d (1 , 1 , 0) ;
f i gu r e (4)
p lot IPDF (g r a i n s (g r a i n s . phase ==1). m eanO r ie ntat ion , . . .

di r , ’ c o n t o u r f ’) , co lorbar ;

All of the figures here were done for the alpha phase, which is
phase 1 in grains. To get figures for the beta phase, just
change the (grains.phase==1) to (grains.phase==2).

Travis Skippon and Chris Cochrane Texture and MATLAB 62 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

An ODF contains full information about the distribution of
orientations, instead of just information about a single crystal
direction as in a pole figure. It can be calculated from other
data-types, such as EBSD data, using the calcODF function.

alphaODF=calcODF (ebsd (’ Z i rc o n iu m ’) . o r i e n t a t i o n s)
betaODF=calcODF (ebsd (’ Z i rcon iumBeta ’) . o r i e n t a t i o n s)

Travis Skippon and Chris Cochrane Texture and MATLAB 63 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

Let’s take another look at the pole figures for our data, this
time both alpha and beta phasess:

p1=M i l l e r (0 , 0 , 0 , 2 , ebsd (’ Z i r c on i um ’) . CS) ;
p2=M i l l e r (1 ,0 ,−1 ,0 , ebsd (’ Z i r c on i u m ’) . CS) ;
p1beta=M i l l e r (1 , 1 , 1 , ebsd (’ Z i rcon iumBeta ’) . CS) ;
p2beta=M i l l e r (1 ,−1 ,0 , ebsd (’ Z i rcon iumBeta ’) . CS) ;

f i gu r e (1)
plotPDF (ebsd (’ Z i r co n iu m ’) . o r i e n t a t i o n s , . . .

[p1 p2] , ’ c o n t o u r f ’ , 0 : 1 : 6) , co lorbar ;
f i gu r e (2)
plotPDF (ebsd (’ Z i rcon iumBeta ’) . o r i e n t a t i o n s , . . .

[p1beta p2beta] , ’ c o n t o u r f ’ , 0 : 1 : 3)
co lorbar ;

Travis Skippon and Chris Cochrane Texture and MATLAB 64 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

Travis Skippon and Chris Cochrane Texture and MATLAB 65 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

It seems like the pole figure is slightly tilted! This is pretty
common since EBSD samples have to be aligned by hand in
the SEM and might be off by a few degrees. We can use an
MTEX function on the ODF to correct this. The
centerSpecimen function takes in an ODF and attempts to
find and align the sample symmetry. It returns a rotated ODF
along with information about the rotation.

[cor alphaODF , r o t A l p h a]= c e n t e r S p e c i m e n (alphaODF) ;
[cor betaODF , r o t B e t a]= c e n t e r S p e c i m e n (betaODF) ;

Travis Skippon and Chris Cochrane Texture and MATLAB 66 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

We now have corrected ODF’s for the alpha and beta phases,
as well as the rotations applied to them. Since both are in the
same sample, both rotations should be the same, so let’s
check:

> r o tA lpha
ro tA lpha = r o t a t i o n (show methods , p l o t)

s i z e : 1 x 1

Bunge Eu l e r a n g l e s i n deg r ee
ph i1 Phi ph i2 I n v .

195 .759 24.3131 170.364 0
> r o tBe ta
ro tBe ta = r o t a t i o n (show methods , p l o t)

s i z e : 1 x 1

Bunge Eu l e r a n g l e s i n deg r ee
ph i1 Phi ph i2 I n v .

273 .467 16 .099 90.3354 0

Travis Skippon and Chris Cochrane Texture and MATLAB 67 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

We can see from the euler angle output of the rotations that
they don’t look like they agree very well. Let’s check how
much they’ve been rotated by, and the axes about which
they’re being rotated.

> r o tA lpha . ang le / deg r ee
ans =

25.0610

> r o tA lpha . a x i s
ans = vec to r 3d (show methods , p l o t)
s i z e : 1 x 1

x y z
−0.946878 −0.213336 0.240645

> r o tBe ta . ang le / deg r ee
ans =

16.5391
> r o tBe ta . a x i s
ans = vec to r 3d (show methods , p l o t)
s i z e : 1 x 1

x y z
0.0266052 −0.973203 0.228405

Travis Skippon and Chris Cochrane Texture and MATLAB 68 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

We can see that the alpha phase has been rotated by 25
degrees about an axis close to the x axis, while the beta phase
is being rotated by 16 degrees, mostly about the y axis.
It doesn’t make physical sense to apply two different
corrections to the different phases, so we can use the rotate()
function to rotate one of the ODF’s by the correction applied
to the other. We can assume that since the sample is mostly
alpha, the statistics for that phase are better, so let’s apply
the alpha rotation to the beta phase and then plot the results.

Travis Skippon and Chris Cochrane Texture and MATLAB 69 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

f i gu r e (3)
plotPDF (cor alphaODF , [p1 p2] , ’ c o n t o u r f ’ , 0 : 6)
co lorbar ;

f i gu r e (4)
cor betaODF=rotate (betaODF , r o t A l p h a) ;
plotPDF (cor betaODF , [p1beta p2beta] , ’ c o n t o u r f ’ , 0 : 3)
co lorbar ;

Travis Skippon and Chris Cochrane Texture and MATLAB 70 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Pole Figures
Orientation Distribution Functions

Travis Skippon and Chris Cochrane Texture and MATLAB 71 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Schmidt Factor Analysis

Say we want to calculate the Schmidt factor for various slip
modes in the HCP structure. We need to know the direction
of loading, and the orientation of our crystallite.
First, we define our loadVector, which is direction of loading.
You can use ”xvector”, ”yvector” and ”zvector” to refer to the
principle orientations of the plane. For EBSD, it will typically
be xvector or yvector.

l o a d V e c t o r = z v e c t o r ;
s l i p P l a n e T y p e=s y m m e t r i s e (M i l l e r (1 ,0 ,−1 ,0 ,CS , ’ h k l ’)) ;
s l i p D i r e c T y p e=s y m m e t r i s e (M i l l e r (1 ,1 ,−2 ,0 ,CS , ’ uvw ’)) ;

Here we use symmetrise to create vectors with all the
symmetrically equivalent planes and directions for prism slip.

Travis Skippon and Chris Cochrane Texture and MATLAB 72 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Recall that the Schmidt factor is

m = cos(φ) cos(λ)

Where φ is the angle between the loading axis and the slip
direction, and λ is the angle between the loading axis and the
slip plane.
The geometric definition of the dot product is:

a · b = |a||b| cos(θ)

So if we simply normalize all of our vectors, the calculation of
Schmidt factors simplifies to the calculation of dot products,
which MATLAB can do very quickly.

Travis Skippon and Chris Cochrane Texture and MATLAB 73 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Next, calculate the dot product of each slip plane and slip
direction with the load vector. Here we have arbitrarily chosen
to look at grain 6 in our ebsd data set.

o = g r a i n s (6) . m e a n O r i e n t a t i o n ;
a = s l i p P l a n e T y p e ;
N = length (s l i p D i r e c T y p e) ;
s l i p P l a n e = a (c e i l ((1 :N* length (a)) /N)) ;
s l i p D i r e c t i o n = repmat (s l i p D i r e c T y p e , . . .

length (s l i p P l a n e T y p e) , 1) ;
p r i s m t a u=dot (n o r m a l i z e (o* s l i p P l a n e) , l o a d V e c t o r) . * . . .

dot (n o r m a l i z e (o* s l i p D i r e c t i o n) , l o a d V e c t o r) ;

The o*slipPlane returns the vector of the slipPlane normal in
the sample reference frame, so that we can compare directly
to the loadVector, which is also in this reference frame.

Travis Skippon and Chris Cochrane Texture and MATLAB 74 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

It’s also important to remove slip systems that are impossible.
The slip direction must be in the slip plane, i.e. orthogonal to
the slip plane normal. Here is some code that uses some fancy
conditional indexing to achieve this.

p r i s m t a u (abs (dot (v e c t o r 3 d (s l i p D i r e c t i o n) , . . .
v e c t o r 3 d (s l i p P l a n e))) > 0) = [] ;

Travis Skippon and Chris Cochrane Texture and MATLAB 75 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

The code can then be adjusted to calculate values for basal or
pyramidal slip modes. For example:

% Basa l S l i p
% (0001) , [11−20]
s l i p P l a n e T y p e=s y m m e t r i s e (M i l l e r (0 , 0 , 0 , 1 , CS , ’ h k l ’)) ;
s l i p D i r e c T y p e=s y m m e t r i s e (M i l l e r (1 ,1 ,−2 ,0 ,CS , ’ uvw ’)) ;

% Pyramida l S l i p
% (10−11) , [11−23]
s l i p P l a n e T y p e=s y m m e t r i s e (M i l l e r (1 ,0 ,−1 ,1 ,CS , ’ h k l ’)) ;
s l i p D i r e c T y p e=s y m m e t r i s e (M i l l e r (1 ,1 ,−2 ,3 ,CS , ’ uvw ’)) ;

Travis Skippon and Chris Cochrane Texture and MATLAB 76 / 78

Hello

MATLab Basics
Working with EBSD Data
Working with Pole Figures

Schmidt Factor Analysis

Summary

MATLAB and the MTEX toolbox are very useful for analyzing
and visualizing data related to crystallographic orientations
and texture.
If you have a project involving crystallographic orientations,
chances are that MTEX can make it far easier. Feel free to
talk to us and we can help you out.

Travis Skippon and Chris Cochrane Texture and MATLAB 77 / 78

MATLAB and the MTEX Toolbox

for Texture Analysis
Nuclear Materials Research Group

Travis Skippon and Chris Cochrane

Department of Mechanical and Materials Engineering
Queen’s University

	MATLab Basics
	Basics
	Conditional Indexing
	Structures and Properties

	Working with EBSD Data
	Basics of EBSD Data
	Grain Statistics
	Grain Boundaries
	Advanced Boundary Analysis

	Working with Pole Figures
	Pole Figures
	Orientation Distribution Functions

	Schmidt Factor Analysis

